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In the numerical simulation of transient reacting flow, standard explicit calculation is prohibitively expensive
because of the small time steps needed to address the stiffness of a governing differential system. To circumvent
this, new hybrid implicit–explicit methods proposed treat the stiffness, whereas the underlying time-step control
is governed by the Courant stability criterion. Because the coefficients of both explicit and implicit operations are
entirely determined by solving the necessary conditions of accuracy and L stability without any extra assumptions,
the methods are more generalized than other similar methods in the literature. Two families of semi-implicit Runge–
Kutta schemes are developed for split differential equations in the form of u′ = f (t, u) + g(t, u), where f is treated
explicitly and g is simultaneously treated implicitly. Like the rest of all the developed schemes, a low-storage family
of semi-implicit schemes is also derived to be globally high-order accurate and L stable for implicit calculations. In
a companion paper (Yoh, J. J., and Zhong, X., “New Hybrid Runge–Kutta Methods for Unsteady Reactive Flow
Simulation: Applications,” AIAA Journal, Vol. 42, No. 8, 2004, pp. 1601–1611) the new schemes are tested to solve
a wide range of applications in high-speed flow physics involving combustion.

Nomenclature
ai , bi = coefficients of low-storage semi-implicit

Runge–Kutta (LSSIRK) schemes
bi j = coefficients of explicit part of semi-implicit

Runge–Kutta (SIRK) schemes
ci = coefficients of implicit part of LSSIRK schemes, di

ci j = coefficients of implicit part of SIRK schemes
c̄i = coefficients of implicit part of LSSIRK schemes
di = diagonal terms of ci j

F = flux vector
f (x, t) = nonstiff part of du/dt
f (x, t) = nonstiff part of an ordinary differential equation

(ODE) system du/dt
g(u, t) = stiff part of du/dt
g(u, t) = stiff part of an ODE system du/dt
h = time step size
J = Jacobian matrix of g
ki = intermediate functions for r -stage

Runge–Kutta scheme
r = maximum stage index for r-stage

Runge–Kutta schemes
ri = time coefficients of explicit Runge–Kutta schemes
si = time coefficients of implicit Runge–Kutta schemes
t = independent or nonautonomous variable
U = conservation variable vector
u(t) = dependent variable, scalar
u(t) = dependent variable, vector
W = source vector
x = spatial coordinate
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α = wedge angle bounded by the axes of the
stability plane

λ f = eigenvalues of ∂f/∂u
λg = eigenvalues of ∂g/∂u
ωi = weight coefficients of SIRK schemes

Subscripts

f = nonstiff term
g = stiff term
i, j = dummy indices

Introduction

T HIS paper is concerned with robust and high-order-accurate
methods for computing stiff systems of ordinary differential

equations that can be additively separated into relatively stiff and
nonstiff terms in the following form:

du
dt

= f (u, t) + g(u, t) (1)

where f and g are vectors representing nonstiff and stiff terms,
respectively, and not vice versa. The maximum magnitude of the
eigenvalues of Jacobian matrix ∂g/∂u is much larger than that for
∂f/∂u. There are many practical problems involving the numerical
solutions of such equations. An example is the numerical simula-
tion of transient reacting flows, such as the direct numerical simu-
lation (DNS) of the stability and transition of hypersonic reacting
boundary-layer flows,1,2 where high-order-accurate and robust nu-
merical methods are required. The governing equations for transient
high-speed reactive flows can be written in the following form:

∂U
∂t

+ ∂F j

∂x j
= W (2)

where F j are the flux vectors and W is the vector for the reacting
source terms. The spatial discretization of Eq. (2) leads to a system of
additively split ordinary differential equations (1), where the source
term W is taken as the stiff term g and the rest of the convective and
diffusive flux terms are taken as the term f .

A major computational difficulty lies in the stiffness of tempo-
ral integrations of ordinary differential equations after spatial dis-
cretizations are applied to the reactive Navier–Stokes equations. The
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stiffness is introduced from the source term modeling the finite-
rate reaction chemistry. To solve Eq. (1), one uses an implicit
approach to integrate the equation, so that an excessively small
time-step constraint from an explicit approach is avoided. Global
implicit methods, however, are computationally expensive for mul-
tidimensional reactive flow computations due to the large memory
requirements to invert the Jacobian matrix for the implicit terms and
prohibitively large amount of computer time. For reactive flow equa-
tions where the stiff terms can be additively separated out from
the rest [see Eq. (1)], a semi-implicit method can simultaneously
treat the nonstiff term f explicitly and the stiff term g implic-
itly. Examples of the semi-implicit methods include the Adams–
Bashforth–Crank–Nicolson (ABCN) method3−5 often used in the
DNS of incompressible turbulent flows and the semi-implicit Mac-
Cormack method (see Refs. 6 and 7) used in compressible reactive
flow simulation. An alternative method for computing very stiff
reactive flow equations is the time-splitting method. This method
involves advancing a fraction of time step in solving the stiff
equation implicitly and using this predictor step to solve the re-
maining advection term explicitly.8−12 The time-splitting method
is shown robust for highly stiff equations in many combustion
reaction simulations. Nevertheless, its accuracy is well known
to degrade to a low-order accuracy at the vicinity of a strong
shock.

The main drawback of the previous semi-implicit methods is that
their temporal accuracy is usually second order. For the DNS of tran-
sient reactive flows, third-order or higher accurate methods are de-
sirable to capture all flow timescales. To obtain high-order-accurate
semi-implicit schemes with a good stability property, namely, the
L stability, the simultaneous coupling between the explicit and im-
plicit terms needs to be considered in the derivation of the scheme.
In Ref. 13, the author derived and analyzed three different versions
of semi-implicit Runge–Kutta (SIRK) methods for additively split
autonomous differential equations of

du
dt

= f (u) + g(u) (3)

where the nonstiff term f is treated by explicit Runge–Kutta meth-
ods and the stiff term g is simultaneously treated by three implicit
Runge–Kutta methods. The three implicit methods for g are a diago-
nally implicit Runge–Kutta method and two linearized Runge–Kutta
methods (see Ref. 14).

The SIRK schemes derived in Ref. 13, however, have a drawback
in that they are not storage efficient because they require multi-
ple sets of computer memory for each variable in the flowfields.
Such computer memory requirement becomes a significant limiting
factor in the large-scale computations of multidimensional reactive
flows. A number of explicit low-storage Runge–Kutta schemes of
third-order accuracy were derived by Williamson,15 and 2N storage
version of fully implicit Runge–Kutta scheme is used by Engquist
and Sjögreen,16 where N is the total number of unknown variables.
Another drawback of the SIRK schemes derived in Ref. 13 is that
they are derived for the autonomous equations (3) only. A classical
explicit Runge–Kutta scheme derived for an autonomous equation
can easily be extended to solve a nonautonomous equation by means
of simple variable transformation. However, a simple extension of
an autonomous SIRK to a nonautonomous equation in the form of
Eq. (1) is not trivial because of the coupling between the f and g
terms in the corresponding order conditions.

More recently, Calvo et al.17 and Ascher et al.18 presented the
implicit–explicit Runge–Kutta schemes for time-dependent differ-
ential equations. By assigning a single constant gamma to represent
a diagonal set of implicit coefficients, the authors derived a spe-
cialized version of SIRK schemes. Instead, our coefficients of the
SIRK schemes presented in this paper are completely determined
by the conditions of accuracy and L stability and, thus, more gen-
eral. Moreover, the schemes require low memory storage and ef-
fectively comply with the modern large-scale scientific computing
needs.

The biggest challenge in the derivation of the SIRK schemes lies
in the search for a set of coefficients satisfying all of the algebraic

conditions arising from the accuracy and L-stability requirements.
As shown in Ref. 13 for the autonomous equation (3), three-stage
methods provide enough free parameters to determine a third-order
semi-implicit scheme that is L stable. On the other hand, for the
nonautonomous equation (1), there exist extra accuracy conditions
related to time-variant terms. Thus, a four-stage SIRK method is
needed to reach a third-order accuracy. There is an analogy between
the quadrature formulas and the general Runge–Kutta schemes in
the derivation of some of the well-known implicit schemes. Butcher
compiled a set of simplifying conditions, which provides a con-
trolled guideline to the derivation of high-order implicit Runge–
Kutta schemes (see Refs. 19–23). For a third-order additive semi-
implicit low-storage method, the number of those simplifying con-
ditions exceeds the general Taylor expansion order conditions. In
fact, one’s effort to minimize the necessary order conditions for a
high-order scheme and maximize additional freedom to choose un-
determined coefficients can lead to a successful parameter search.
When the current methods need to improve their accuracy of order
three to, for example, five or more, a controlled pattern in the or-
der conditions analogous to Butcher’s can provide a useful starting
point for the search of optimal Runge–Kutta coefficients.

The purpose of this paper is to present new versions of semi-
implicit Runge–Kutta schemes, which have a low-storage memory
requirement and are suitable for integrating non-autonomous equa-
tions for the DNS of reacting flows. In this paper, systematic deriva-
tions of all versions of SIRK methods are described for nonau-
tonomous differential systems with new coefficients that replace
the coefficients previously reported in Ref. 13. The new third-order,
low-storage Runge–Kutta schemes will require only two levels of
memory locations during the time integration. We present new meth-
ods that are high-order accurate and L stable, suitable for solving
Eq. (1). The solution of model equations and multidimensional re-
acting flows that supports the accuracy and stability of the new
schemes is the subject of the companion paper.24

In what follows, high-order low-storage SIRK algorithms for in-
tegrating Eq. (1) are first presented. The algebraic conditions of
accuracy and stability are simultaneously solved to determine the
SIRK coefficients. Then, we rederive a set of rational coefficients for
the general SIRK schemes from Ref. 13. The two families of low-
storage (LS) methods are referred as LSSIRK-4A and LSSIRK-4C
for the implicit and linearized implicit methods, respectively. In
addition, the general SIRK methods will follow SIRK-3 and SIRK-
4 notations for autonomous and nonautonomous methods, respec-
tively. An extensive application of the new algorithms is found in
the companion paper.

SIRK Schemes
In numerical computations of reacting flows using the method of

lines, spatial derivatives in the governing partial differential equa-
tions are first approximated by using a spatial discretization scheme.
The spatial discretization leads to a system of first-order differen-
tial equations in the form of Eq. (1). For systems of unsteady flow
with time-dependent forcing terms or boundary conditions, Eq. (1)
is not autonomous, that is, f (t, u) and g(t, u) are explicit functions
of time. For the purpose of using a SIRK scheme to integrate the
equation, vector g(t, u) contains the stiff source terms and some spa-
tial discretization of the stiff terms. The remaining nonstiff terms
are included in vector f (t, u). In general, the splitting of f and g
terms is not unique, and the SIRK schemes are derived for a given
splitting of f and g terms. The splitting of stiff and nonstiff terms in
Eq. (1) makes it possible to solve the equation by a SIRK scheme,
which is a one-step method involving intermediate stages to achieve
high-order accuracy and good stability properties.

A general r -stage SIRK method integrates Eq. (1) by simultane-
ously treating f explicitly and g implicitly. The simultaneous ex-
plicit and implicit treatment in the SIRK method creates a coupling
between the explicit and implicit terms. Because of the coupling,
the coefficients for the conventional explicit and implicit Runge–
Kutta schemes cannot be used in a SIRK calculation. Two versions
of SIRK methods are considered in this paper. The first version is
denoted as method A (SIRK-rA scheme for an r -stage scheme) in
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the following form:

un + 1 = un +
r∑

j = 1

w j k j (4)

ki = hf

(
tn + ri h, un +

i − 1∑
j = 1

bi j k j

)

+ hg

(
tn + si h, un +

i − 1∑
j = 1

ci j k j + di ki

)
(i = 1, . . . , r) (5)

where h is the time step size. The coefficients can be summarized in
a convenient tabular format known as a Butcher array. The two axes
contain the weights and time coefficients and the main coefficients
are written as a diagonal matrix. The two arrays that summarize
the coefficients of the explicit and the implicit parts of SIRK are as
follows:

s1 d1

s2 c21 d2

s3 c31 c32 d3

s4 c41 c42 c43 d4

ω1 ω2 ω3 ω4

r1

r2 b21

r3 b31 b32

r4 b41 b42 b43

ω1 ω2 ω3 ω4

The second version of the method is denoted method C (SIRK-rC
scheme). This version is derived by the linearized treatment of the
implicit term g as follows:

un + 1 = un +
r∑

j = 1

w j k j (6)

[
I − hdi J

(
tn + si h, un +

i − 1∑
j = 1

ci j k j

)]
ki = h

[
f

(
tn + ri h, un

+
i − 1∑
j = 1

bi j k j

)
+ g

(
tn + si h, un +

i − 1∑
j = 1

ci j k j

)]

(i = 1, . . . , r) (7)

where J = ∂g/∂u is the Jacobian matrix of the stiff term g.

Accuracy Conditions
In an r -stage SIRK scheme, the coefficients of the scheme are de-

termined in such a way that the resulting scheme meets the require-
ment for proposed order of accuracy and stability conditions. The
accuracy conditions for the undetermined coefficients are obtained
by a Taylor expansion. We are mainly interested in deriving the
third-order LSSIRK methods for nonautonomous equations. When
the system of equations is autonomous in the form of Eq. (3), three-
stage SIRK schemes are used for a third-order accuracy. For the
nonautonomous equation (1), however, it is found that a four-stage
SIRK method is required to satisfy the third-order accuracy.

The following equations are the necessary accuracy equations
based on a third-order Taylor expansion. The first 16 equations that
hold for all versions of SIRK are

ω1 + ω2 + ω3 + ω4 = 1, ω2r2 + ω3r3 + ω4r4 = 1
2

ω1s1 + ω2s2 + ω3s3 + ω4s4 = 1
2

ω2b21 + ω3(b31 + b32) + ω4(b41 + b42 + b43) = 1
2

ω1d1 + ω2(d2 + c21) + ω3(d3 + c31 + c32)

+ ω4(d4 + c41 + c42 + c43) = 1
2

ω2r 2
2 + ω3r 2

3 + ω4r 2
4 = 1

3 , ω1s2
1 + ω2s2

2 + ω3s2
3 + ω4s2

4 = 1
3

ω1d1s1 + ω2(c21s1 + d2s2) + ω3(c31s1 + c32s2 + d3s3)

+ ω4(c41s1 + c42s2 + c43s3 + d4s4) = 1
6

ω1d2
1 + ω2[c21d1 + d2(c21 + d2)] + ω3[d1c31 + c32(d2 + c21)

+ d3(c31 + c32 + d3)] + ω4[c41d1 + c42(d2 + c21)

+ c43(c31 + c32 + d3) + d4(c41 + c42 + c43 + d4)] = 1
6

ω3b32r2 + ω4(b42r2 + b43r3) = 1
6

ω2b2
21 + ω3(b31 + b32)

2 + ω4(b41 + b42 + b43)
2 = 1

3

ω2r2b21 + ω3r3(b31 + b32) + ω4r4(b41 + b42 + b43) = 1
3

ω3b32b21 + ω4[b42b21 + b43(b31 + b32)] = 1
6

ω2(b21d2 + b21d1) + ω3(d1b31 + d2b32 + c21b32 + b21c32

+ d3b31 + d3b32) + ω4[b41d1 + b42(d2 + c21) + c42b21

+ b43(c31 + c32 + d3) + c43(b31 + b32)

+ d4(b41 + b42 + b43)] = 1
3

ω2d2r2 + ω3(c32r2 + d3r3) + ω4(c42r2 + c43r3 + d4r4) = 1
6

ω2b21s1 + ω3(b31s1 + b32s2) + ω4(b41s1 + b42s2 + s43s3) = 1
6 (8)

The remaining two accuracy equations differ for each version of the
semi-implicit schemes. For method A,

ω1d2
1 + ω2(c21 + d2)

2 + ω3(c31 + c32 + d3)
2

+ ω4(c41 + c42 + c43 + d4)
2 = 1

3 (9)

ω1d1s1 + ω2s2(c21 + d2) + ω3s3(c31 + c32 + d3)

+ ω4s4(c41 + c42 + c43 + d4) = 1
3 (10)

and for method C,

ω2

(
c2

21 + 2d2c21

)+ ω3

[
(c31 + c32)

2 + 2d3(c31 + c32)
]

+ ω4

[
(c41 + c42 + c43)

2 + 2d4(c41 + c42 + c43)
] = 1

3 (11)

ω2s2(c21 + d2) + ω3s3(c31 + c32 + d3)

+ ω4s4(c41 + c42 + c43 + d4) = 1
3 (12)

There are total 18 accuracy equations involved in developing a
four-stage SIRK scheme for nonautonomous equation (1). Conse-
quently, the SIRK coefficients will be determined based on these
accuracy conditions and a stability condition that is discussed next.
The accuracy conditions suggest the following standard assump-
tions for Runge–Kutta schemes:

si =
i − 1∑
j = 1

ci j + di (13)

ri =
i − 1∑
j = 1

bi j (14)

Then, the 14th condition in Eq. (8) is a mere summation of the 15th
and 16th conditions. A conventional summation form may be found
in the Appendix.

Linear Stability Condition
In addition to accuracy conditions, the third-order SIRK schemes

are required to satisfy a stability condition for methods to be L sta-
ble for the stiff term g. Because of a coupling between the explicit
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and the implicit terms of semi-implicit computations, the linear sta-
bility analysis of this section is slightly different from the standard
context.20 The linear stability analysis is considered with the fol-
lowing scalar model equation:

du

dt
= λ f u + λgu (15)

where λ f and λg represent the eigenvalues of ∂f/∂u and ∂g/∂u,
respectively, for the split ordinary differential equation (1). Substi-
tuting Eq. (15) into any of the SIRK methods leads to the following
equation for a characteristic root γ :

γ = un + 1

un
= 1 +

r∑
j = 1

ω j k j (16)

ki =
[
hλ f

(
1 +

i − 1∑
j = 1

bi j k j

)
+ hλg

(
1 +

i − 1∑
j = 1

ci j k j

)]/
(1 − di hλg)

(i = 1, . . . , r) (17)

where γ is a function of hλ f and hλg .
An A(α) stability region of a semi-implicit method in the complex

plane of hλ f is defined as the region where

|γ {hλ f , hλg}| ≤ 1 (18)

for the left-half complex domain of hλ f and for all hλg within
a wedge bounded by [π − α, π + α] in the complex plane. When
α = π/2, the split SIRK method is defined as A stable. Furthermore,
the L-stable condition is derived by letting |γ {hλ f , hλg}| → 0,
while Re(hλg) → −∞. The L-stability requirement of a SIRK
scheme results in an additional algebraic condition to accuracy,
namely,

1 +
r∑

j = 1

ω jβ j = 0 (19)

with

βi = − 1

di

[
1 +

i − 1∑
j = 1

ci jβ j

]
(i = 1, . . . , r) (20)

LSSIRK Schemes for Nonautonomous Equations
LS versions of the third-order, four-stage SIRK schemes are de-

rived in this section. A general four-stage semi-implicit scheme
requires the storage of variables at 5N locations. Such storage re-
quirement is often too large for multidimensional reactive flow com-
putations. A set of third-order SIRK schemes that requires no more
than 2N storage locations is derived so that they simultaneously sat-
isfy accuracy conditions and the L-stability condition. In this paper,
only two versions of the third-order LSSIRK schemes (methods A
and C) are derived. They are denoted as LSSIRK-4A and LSSIRK-
4C schemes, respectively.

For a nonsplit differential equation, a traditional Runge–Kutta
scheme derived for an autonomous equation, y′ = f (u), can be
extended to a nonautonomous equation, y′ = f (t, u), by a sim-
ple transformation. No new coefficients are needed to solve the
nonautonomous equation. When the governing ordinary differen-
tial equation is a split nonautonomous equation (1), however, the
SIRK schemes derived for the autonomous equation (3) can not be
applied to the nonautonomous equation by a similar transformation
because of a coupling between explicit and implicit terms. A new
set of coefficients are required in the nonautonomous case.

The third-order LSSIRK-4A scheme can be expressed as

k1 = h[ f (t0, u0) + g(t0 + s1h, u0 + c1k1)]

u1 = u0 + b1k1

k2 = a2k1 + h[ f (t0 + r2h, u1) + g(t0 + s2h, u1 + c̄2k1 + c2k2)]

u2 = u1 + b2k2

k3 = a3k2 + h[ f (t0 + r3h, u2) + g(t0 + s3h, u2 + c̄3k2 + c3k3)]

u3 = u2 + b3k3

k4 = a4k3 + h[ f (t0 + r4h, u3) + g(t0 + s4h, u3 + c̄4k3 + c4k4)]

u4 = u3 + b4k4 (21)

Similarly, the third-order LSSIRK-4C scheme for nonautonomous
equations is expressed as

[I − hc1J(t0 + s1h, u0)]k1 = h[ f (t0, u0) + g(t0 + s1h, u0)]

u1 = u0 + b1k1

[I − hc2J(t0 + s2h, u1 + c̄2k1)]k2 = h[ f (t0 + r2h, u1)

+ g(t0 + s2h, u1 + c̄2k1)] + a2[I − hc2J(t0 + s2h, u1 + c̄2k1)]k1

u2 = u1 + b2k2

[I − hc3J(t0 + s3h, u2 + c̄3k2)]k3 = h[ f (t0 + r3h, u2)

+ g(t0 + s3h, u2 + c̄3k2)] + a3[I − hc3J(t0 + s3h, u2 + c̄3k2)]k2

u3 = u2 + b3k3

[I − hc4J(t0 + s4h, u3 + c̄4k3)]k4 = h[ f (t0 + r4h, u3)

+ g(t0 + s4h, u3 + c̄4k3)] + a4[I − hc4J(t0 + s4h, u3 + c̄4k3)]k3

u4 = u3 + b4k4 (22)

Unlike the general r -stage Runge–Kutta methods that have r N stor-
age requirements for one step advancement, the LS Runge–Kutta
scheme requires only memory locations for k j and u j at each of the
general r stage.

The LSSIRK schemes just presented can be written in terms of the
standard SIRK coefficients. In other words, there are 20 transforma-
tion equations between the SIRK and LSSIRK for nonautonomous
equations. The following 14 transformation equations are the same
for both LSSIRK-4A and LSSIRK-4C schemes:

ω1 = b1 + b2a2 + b3a3a2 + b4a4a3a2, ω2 = b2 + b3a3b4a4a3

ω3 = b3 + b4a4, ω4 = b4

b21 = b1, b31 = b1 + b2a2, b32 = b2

b41 = b1 + b2a2 + b3a3a2, b42 = b2 + b3a3, b43 = b3

d1 = c1, d2 = c2, d3 = c3, d4 = c4 (23)

The remaining six transformation equations are different for
LSSIRK method A (LSSIRK-4A) and method C (LSSIRK-4C)
schemes. For the LSSIRK-4A scheme, the additional relations are

c21 = b1 + c̄2 + c2a2, c31 = b1 + b2a2 + c̄3a2 + a2c3a3

c32 = b2 + c̄3 + c3a3

c41 = b1 + b2a2 + (b3 + c̄4)a3a2 + c4a4a3a2

c42 = b2 + (b3 + c̄4)a3 + c4a4a3

c43 = b3 + c̄4 + c4a4 (24)

The additional relations for the LSSIRK-4C method are

c21 = b1 + c̄2, c31 = b1 + b2a2 + c̄3a2

c32 = b2 + c̄3, c41 = b1 + b2a2 + (b3 + c̄4)a3a2

c42 = b2 + (b3 + c̄4)a3, c43 = b3 + c̄4 (25)
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The coefficients for the third-order LSSIRK schemes are deter-
mined by solving the 18 accuracy equations given by Eqs. (8–12).
These accuracy equations are solved for the unknown coefficients.
We then solve these algebraic equations with three predefined coef-
ficients of our choice because there are a total of 22 unknowns for 19
equations, that is, 18 accuracy and 1 L stability. For the LSSIRK-4A
scheme, the derived coefficients are both third-order accurate and L
stable. We also learn that it is more difficult to determine LSSIRK-
4C coefficients with all 19 conditions. Instead, only accuracy condi-
tions are solved for the LSSIRK-4C coefficients. Because there are
many possible sets of solutions for the system of linear equations,
we can find one set of rational numbers in that coefficients are rea-
sonably ranged for numerical implementation. For the LSSIRK-4A
scheme, a set of coefficients in rational numbers can be found by
solving the accuracy and stability equations. The coefficients for
L-stable, third-order method-A (LSSIRK-4A) scheme are

b1 = 3/4, b2 = −2/27, b3 = 2, b4 = 2/3

a2 = 23/4, a3 = −1/9, a4 = −5/2

r2 = 3/4, r3 = 1/4, r4 = 3/4

s1 = 2, s2 = 79/28, s3 = 127/84, s4 = 11/84

c1 = 2, c2 = 10,901/12,096, c3 = 7601/1344

c4 = 3/4, c̄2 = −1027/256

c̄3 = −817/36,288, c̄4 = −605/168

For method C, abscissas of implicit time integration, namely, si ,
are set equal to their explicit counterparts, ri . The coefficients for
the non L-stable LSSIRK-4C scheme are

b1 = 1/3, b2 = −30/73, b3 = 11/150, b4 = −25/4

a2 = −17/90, a3 = 1710/803, a4 = −517/1250

r1 = 0, r2 = 1/3, r3 = 0, r4 = 1/5

c̄3 = −1/2, c̄2 = −0.189210, c̄4 = 0.776465

c1 = 0.102712, c2 = 0.531583

c3 = 0.881764, c4 = 0.776465

SIRK Schemes with Rational Coefficients
In Ref. 13, three sets of SIRK methods for the split autonomous

ordinary differential equations (3) were derived, where the combina-
tion of explicit and implicit Runge–Kutta schemes are used to treat
the nonstiff and stiff parts of the equation. For a third-order accu-
racy, eight accuracy conditions of the coupled treatment of f (u) and
g(u) are derived. An additional L-stability condition further allows
for multiple families of Runge–Kutta coefficients with three free
parameters. In Ref. 13, only the coefficients in finite decimals were
obtained by numerically solving the accuracy and stability equa-
tions. In applications, it is easier to control numerical accuracy of
the coefficients of the SIRK schemes if the coefficients are rational
numbers or can be computed by closed-form analytical formulas.

In this section, the coefficients for the three versions of the third-
order SIRK schemes of Ref. 13 are rederived in rational numbers.
They are derived by requiring to satisfy the accuracy and stability
conditions, along with the requirement that implicit coefficients are
positive. The algebraic conditions for the autonomous equations are

ω1 + ω2 + ω3 = 1, ω2b21 + ω3(b31 + b32) = 1
2

ω1d1 + ω2(d2 + c21) + ω3(d3 + c31 + c32) = 1
2

ω1d2
1 + ω2[c21d1 + d2(c21 + d2)] + ω3[d1c31 + c32(d2 + c21)

+ d3(c31 + c32 + d3)] = 1
6

ω2b2
21 + ω3(b31 + b32)

2 = 1
3 , ω3b32b21 = 1

6

ω2(b21d2 + b21d1) + ω3(d1b31 + d2b32 + c21b32

+ b21c32 + d3b31 + d3b32) = 1
3 (26)

The remaining last condition is different for the three versions of
SIRK schemes.

Method A:

ω1d2
1 + ω2(c21 + d2)

2 + ω3(c31 + c32 + d3)
2 = 1

3 (27)

Method B:

ω2c2
21 + ω3(c31 + c32)

2 = 1
3 (28)

Method C:

ω2

(
c2

21 + 2d2c21

)+ ω3

[
(c31 + c32)

2 + 2d3(c31 + c32)
] = 1

3 (29)

The eight accuracy conditions listed [Eq. (26) and either Eq. (27),
(28), or (29)] and the additional stability condition given by Eq. (18)
are solved for 12 undetermined coefficients. There are three free pa-
rameters. We choose w1 = 1

8 , d1 = 3
4 , and w2 = 1

8 . By considerable
manipulations on the remaining algebraic equations, nine rational
coefficients are found. What differs in our approach from Ref. 13
is that, in this work, we have concentrated on finding the analytical
form of the roots by grouping approaches. As a result, three sets
of third-order SIRK coefficients have been derived in rational num-
bers. As an example, a set of SIRK-3A coefficients consists of the
following;

w1 = 1/8, w2 = 1/8, w3 = 3/4

b21 = 8/7, b31 = 71/252, b32 = 7/36

d1 = 3/4, d2 = 75/233, d3 = 65/168

c21 = 5589/6524, c31 = 7691/26,096

c32 = −26,335/78,288

The coefficients for 3B and 3C are listed in the Appendix.
For the nonautonomous split differential equation (1), four-stage

methods are required to achieve a third-order accuracy. Because four
stages are used, we denote new schemes as SIRK-4A and SIRK-4C.
The accuracy conditions of Eqs. (8–12) are solved for the unknown
coefficients. If there is no rational coefficient, we use a decimal
number that is found by the numerical root solver, instead.

For the SIRK-4A scheme, the following coefficients are derived
to satisfy both the accuracy and the L-stability conditions. Their
coefficients are

ω1 = 13/100, ω2 = 1/4, ω3 = 13/25, ω4 = 1/10

b21 = 0.338170, b31 = −0.019088, b32 = 0.779584

b41 = −3/10, b42 = 1/5, b43 = 3/10

c21 = −147/500, c31 = 0.149135, c32 = 1/5

c41 = −1.13081, c42 = 1.78081, c43 = −1/2

d1 = 117,481/100,000, d2 = 0.526767

d3 = 0.158717, d4 = 1/10

where

ri =
i − 1∑
j = 1

bi j , si = di +
i − 1∑
j = 1

ci j

The coefficients of a companion scheme, SIRK-4C, are listed in
the Appendix.
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A(α) Stability Regions of SIRK Schemes
In the preceding section, three groups of new third-order SIRK

schemes have been developed with various properties. They are
1) SIRK-3A, SIRK-3B, and SIRK-3C methods for the autonomous
equation; 2) SIRK-4A and SIRK-4C methods for the nonau-
tonomous equation; and 3) LSSIRK-4A and LSSIRK-4C, LSSIRK
methods for the nonautonomous equation.

In the case of a classical explicit Runge–Kutta scheme for a sin-
gle ordinary differential equation in the form of u′ = f (t, u), the
stability is evaluated by applying a linear model equation, u′ = λu,
where λ is a complex number with nonpositive real part. The region
of stability is defined as the region in the hλ complex plane, where
the magnitude of the characteristic root of the scheme is not greater
than 1. In this section, we calculate the stability region of the SIRK
schemes based on the scalar split model equation of Eq. (15). An
A(α) stability region of semi-implicit methods is computed in the
complex plane of hλ f by Eq. (18). In other words, a SIRK is L
stable to the stiff term hλg , whereas there is a limited stability re-
gion for the nonstiff term hλ f because the nonstiff term f is treated
explicitly.

Figure 1 shows the region of A(α) stability for the explicit term
hλ f for all possible hλg within a wedge bounded by [π/2, 3π/2]
in the complex plane for the SIRK-3C scheme. Figure 1 shows
that, when α = 0, the stability region in hλ f is similar to a classi-
cal explicit third-order Runge–Kutta (RK) scheme. The stability of
the semi-implicit scheme is not affected by the implicit treatment
of the stiff term. As the wedge angle α for the implicit term in-
creases from 0 to 90 deg, the stability region for hλ f of the SIRK-3C
scheme decreases somewhat. The SIRK-3A and SIRK-3B schemes
are also found to have similar stability regions, which are not shown
here.

The second group of the SIRK schemes are the four-stage third-
order SIRK schemes for the nonautonomous equation (1). The third-
order RK schemes for nonautonomous equations require four stages
(SIRK-4A and SIRK-4C) because additional accuracy conditions
are needed to achieve high order. The A(α) stability regions of
SIRK-4A and SIRK-4C schemes for nonautonomous equations are
shown in Figs. 2 and 3, respectively. Figures 2 and 3 show that
the SIRK-4A method retains similar stability properties as those of
the SIRK-3C method. The stability region of the SIRK-4C method
is good when α is less than 67.5 deg. This condition is satisfied
for most of the stiff differential equation. For the case of α close to
90 deg, the stability region is more restricted because the L-stability
condition is not imposed in the SIRK-4C derivation.

The third group of the SIRK schemes is the third-order low-
storage schemes. The A(α) stability regions of third-order low-
storage RK schemes (LSSIRK-4A and LSSIRK-4C schemes) are
computed for the nonautonomous equation. Figures 4 and 5 show
the regions of stability for the explicit term hλ f for all possible

Fig. 1 A(α)-stability region of the SIRK-3C method for the explicit
terms hλf .

Fig. 2 A(α)-stability region of the SIRK-4A method for the explicit
terms hλf .

Fig. 3 A(α)-stability region of the SIRK-4C method for the explicit
terms hλf .

Fig. 4 A(α)-stability region of the LSSIRK-4A method for the explicit
terms hλf .

hλg within a wedge bounded by [π/2, 3π/2] in the complex plane.
Figures 4 and 5 show that the LSSIRK-4A scheme retains similar
stability properties as those of the SIRK-3C method. Like the case
of the SIRK-4C method, the LSSIRK-4C method is derived to sat-
isfy the accuracy equations only. Therefore, the stability region of
LSSIRK-4C is more restrictive when α approaches 90 deg. There-
fore, for stiff equations, the L-stable LSSIRK-4A is recommended
over the LSSIRK-4C method.
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Fig. 5 A(α)-stability region of the LSSIRK-4C method for the explicit
terms hλf .

Conclusions
New high-order, semi-implicit RK schemes are developed to sim-

ulate transient reacting flows. Because the high-order L-stable im-
plicit method treats g(t, u) and high-order explicit method treats
f (t, u) independently, the cost of running the hybrid scheme is
only a fraction of that needed to do a full implicit calculation. At the
same time, the efficiency of the explicit RK method is maintained
through out the simultaneous coupling of the two. The scheme is
guaranteed to be both high-order accurate and L stable. The cou-
pling between implicit and explicit methods, furthermore, removes
the prohibitively small time step requirement of solving stiff differ-
ential equations. Because of its LS framework, the present scheme
is also suitable for large-scale computations involving a massive
memory requirement.

Appendix: Summation Form and Coefficients
Accuracy Conditions in Summation Form

We construct general accuracy conditions (8–12) in summation
form. As before, the first 16 are general, and the 17th and 18th differ
for method A and method C:

∑
i

ωi = 1,
∑

i

ωi ri = 1

2
,

∑
i

ωi si = 1

2

∑
i

ωi

i∑
j

bi j = 1

2
,

∑
i

ωi

i∑
j

ci j = 1

2
,

∑
i

ωi r
2
i = 1

3

∑
i

ωi s
2
i = 1

3
,

∑
i

ωi

i∑
j

ci j s j = 1

6

∑
i

ωi

i∑
j

ci j

j∑
k

c jk = 1

6
,

∑
i

ωi

i∑
j

bi j r j = 1

6

∑
i

ωi

( i∑
j

bi j

)2

= 1

3
,

∑
i

ωi ri

i∑
j

bi j = 1

3

∑
i

ωi

i∑
j

bi j

j∑
k

b jk = 1

6

∑
i

ωi

( i∑
j

ci j

j∑
k

b jk +
i∑
j

bi j

j∑
k

c jk

)
= 1

3

∑
i

ωi

i∑
j

ci j r j = 1

6
,

∑
i

ωi

i∑
j

bi j s j = 1

6
(A1)

Two additional conditions for method A are

∑
i

ωi

( i∑
j

ci j

)2

= 1

3
,

∑
i

ωi si

i∑
j

ci j = 1

3
(A2)

and for method C, we have

∑
i

ωi

i − 1∑
j

ci j

i∑
j

(ci j + cii ) = 1

3
,

∑
i

ωi si

i∑
j

ci j = 1

3

(A3)

Coefficients in 16-Decimal Approximation
The listed coefficients are either rational numbers or 16-decimal

approximations.
SIRK-3B (L stable, autonomous):

d1 = 1.403160446775581, d2 = 0.3222947153259484

d3 = 0.3153416455775987

c21 = 1.560563684998894, c31 = 1
2

c32 = −0.6963447867610024

SIRK-3C (L stable, autonomous):

d1 = 0.7970967740096232, d2 = 0.5913813968007854

d3 = 0.1347052663841181

c21 = 1.058925354610082, c31 = 1
2

c32 = −0.3759391872875334

SIRK-4C (not L stable, nonautonomous):

ω1 = 1/8, ω2 = 1/4, ω3 = 21/40, ω4 = 1/10

b21 = 0.3299167710731796, b31 = −0.003584629502199719

b32 = 0.7626718813721142, b41 = 3/10

b42 = −1, b43 = 89/100

c21 = 3/20, c31 = 8409/250,000

c32 = 0.7116738279305653, c41 = 314,661/1,000,000

c42 = −1.253976571187243, c43 = 0.7553162838891784

d1 = 0.2171130238473288, d2 = 0.0918145303512467

d3 = 41,351/1,000,000, d4 = 0.1781023349753196
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